Back to top
Exchanging

Synergies

Scientific publications
Date
September 2023
Authors
Jakob Wachsmuth
Philine Warnke
Ajay Gambhir
Sara Giarola
Konstantinos Koasidis
Shivika Mittal
Alexandros Nikas
Kathleen Vaillancourt
Haris Doukas
Journal
Renewable and Sustainable Energy Transition
Title
Co-creating socio-technical scenarios for net-zero emission pathways: comparison of five national case studies
Short description

The extent to which modelled future pathways support effective policymaking for sustainability transitions has been questioned for a long time, with one major issue being the insufficient integration with the perspectives of policymakers and other stakeholders. One proposal to address this issue has been to set up facilitative dialogues with stakeholders to extend model-based pathways to socio-technical scenarios. This paper presents the results of a first series of such co-creation workshops, where stakeholders discussed bottlenecks for model-based decarbonisation pathways and ways to overcome these bottlenecks through tailored policy mixes. The workshops took place in five countries: Brazil, Canada, Greece, Germany, and the UK, each with a specific sector focus. In all five workshops, it became clear that substantial tensions exist between the “ideal” modelled decarbonisation pathways and the real-world situation on the ground. Also, adverse political framework conditions, uncertainty of future policies and resistance of powerful actors were emphasised as overarching bottlenecks in most workshops. At the same time, in several instances stakeholders pointed out important aspects of transformative trajectories that are not covered by the models. Some challenges and solutions stand out in all countries in spite of the strong diversity of contexts: allocation of capital towards massive investments into low-carbon solutions; infrastructure development for generation and transport of hydrogen, capture and use of CO2 as well as electricity grid and storage adapted to renewable energy solutions; stakeholder and citizen dialogues, where agreement is reached on cornerstones of long-term decarbonisation trajectories; and demand-side measures complementing investments into low-carbon processes.





Date
August 2023
Authors
Ajay Gambhir
Shivika Mittal
Robin D. Lamboll
Neil Grant
Dan Bernie
Laila Gohar
Adam Hawkes
Alexandre Köberle
Joeri Rogelj
Jason A. Lowe
Journal
Nature Communications
Title
Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information
Short description

Understanding how 1.5 °C pathways could adjust in light of new adverse information, such as a reduced 1.5 °C carbon budget, or slower-than-expected low-carbon technology deployment, is critical for planning resilient pathways. We use an integrated assessment model to explore potential pathway adjustments starting in 2025 and 2030, following the arrival of new information. The 1.5 °C target remains achievable in the model, in light of some adverse information, provided a broad portfolio of technologies and measures is still available. If multiple pieces of adverse information arrive simultaneously, average annual emissions reductions near 3 GtCO2/yr for the first five years following the pathway adjustment, compared to 2 GtCO2/yr in 2020 when the Covid-19 pandemic began. Moreover, in these scenarios of multiple simultaneous adverse information, by 2050 mitigation costs are 4-5 times as high as a no adverse information scenario, highlighting the criticality of developing a wide range of mitigation options, including energy demand reduction options.




Tags
Global modelling

Date
August 2023
Authors
Panagiotis Fragkos
Eleni Kanellou
George Konstantopoulos
Alexandros Nikas
Kostas Fragkiadakis
Faidra Filipidou
Theofano Fotiou
Haris Doukas
Journal
Studies in Energy, Resource and Environmental Economics
Title
Energy Poverty and Just Transformation in Greece
Short description

Low-income population groups often face high energy poverty risks. This phenomenon can be exacerbated through the implementation of ambitious environmental policies to achieve the energy transition—said policies, such as the application of additional taxes on energy products, may lead to regressive social and distributional impacts on low-income households thus increasing the risk of energy poverty. This study focusses on Greece and combines a qualitative analysis of the EU and Greek policy context and strategic framework for energy poverty as well as related poverty alleviation measures with a state-of-the-art model-based assessment of the equity and distributional impacts of the net-zero transition in the country. We use the GEM-E3-FIT general equilibrium model, expanded to represent ten income classes differentiated by income sources, saving rates and consumption patterns. The new modelling capabilities of GEM-E3-FIT are applied to quantify the distributional impacts of ambitious emission reduction targets and at the same time explore their effects on energy-related expenditure and energy poverty by income class in Greece. The country’s transition to climate neutrality increases modestly the income inequality across income classes, with low-income households facing the most negative effects. However, using carbon tax revenues as lump-sum transfers to support household income and as reduced social security contributions have the potential to boost employment and scale down income inequality in Greece.




Tags
Regional modelling

Date
July 2023
Authors
Ajay Gambhir
Alexandros Nikas
Journal
PLOS Climate
Title
Seven key principles for assessing emerging low-carbon technological opportunities for climate change mitigation action
Short description

The proposed framework is an intuitively obvious one, yet still serves as a climate technology-specific “checklist” to ensure that any newly proposed technologies or products can succeed. There will be continuous changes to the regulations, infrastructures, and political contexts, in which new technologies will be developed, which is why each consideration is not intended as a one-shot “yes/no” process but must rather be continuously reviewed and reconsidered in light of potentially rapid developments.



Synergies


Date
May 2023
Authors
Dirk-Jan van de Ven
Shivika Mittal
Ajay Gambhir
Robin Lamboll
Haris Doukas
Sara Giarola
Adam Hawkes
Konstantinos Koasidis
Alexandre C. Koberle
Haewon McJeon
Sigit Perdana
Glen P. Peters
Joeri Rogelj
Ida Sognnaes
Marc Vielle
Alexandros Nikas
Journal
Nature Climate Change
Title
A multi-model analysis of post-Glasgow climate targets and feasibility challenges
Short description

The COP26 Glasgow process resulted in many countries strengthening their 2030 emissions reduction targets and announcing net-zero pledges for 2050–2070 but it is not clear how this would impact future warming. Here, we use four diverse integrated assessment models (IAMs) to assess CO2 emission trajectories in the near- and long-term on the basis of national policies and pledges, combined with a non-CO2 infilling model and a simple climate model to assess the temperature implications. We also consider the feasibility of national long-term pledges towards net-zero. While near-term pledges alone lead to warming above 2 °C, the addition of long-term pledges leads to emissions trajectories compatible with a future well below 2 °C, across all four IAMs. However, while IAM heterogeneity translates to diverse decarbonization pathways towards long-term targets, all modelled pathways indicate several feasibility concerns, relating to the cost of mitigation and the rates and scales of deployed technologies and measures.




Tags
Global modelling
Regional modelling
Synergies

Date
February 2023
Authors
Anastasios Karamaneas
Konstantinos Koasidis
Natasha Frilingou
Georgios Xexakis
Alexandros Nikas
Haris Doukas
Journal
Renewable & Sustainable Energy Transition
Title
A stakeholder-informed modelling study of Greece's energy transition amidst an energy crisis: the role of natural gas and climate ambition
Short description

While fossil fuel prices soar during the 2022 global energy crisis, the European Union activates all available fossil-fuel levers and Greece still plans to use natural gas as a transition fuel for delignitisation, with strong concerns over potential exacerbation of energy poverty and hurdles to progress in climate action. This study assesses the trajectory of the Greek electricity mix and its reliance on natural gas under the current policy framework on the one hand, and an ambitious scenario aiming for complete decarbonisation by 2035 on the other. We model these scenarios using an energy system modelling framework, comprising LEAP and OSeMOSYS model implementations for Greece, and use a stakeholder-informed fuzzy cognitive mapping exercise to uncover transition uncertainties. While power generation from natural gas is projected to increase by almost 50% until 2030 under existing policies, the proposed decarbonisation scenario has the potential to achieve complete independence from Russian gas by 2026 while also leading to a cleaner and considerably cheaper power sector. This ‘higher climate ambition’ scenario is found feasible and more robust in case high fossil fuel prices persist post-2022, even if bottlenecks stressed by stakeholders such as community acceptance or technological constraints emerge and potentially constrain the expansion of certain renewable energy technologies. Apart from the added value of stakeholder input in modelling science, as reflected in the impact of barriers Greek stakeholders critically highlighted, our results emphasise that a diversified energy-supply mix alongside bold energy efficiency strategies are key to rapid and feasible decarbonisation in the country.




Tags
Regional modelling
Interdisciplinary science
Transdisciplinary science

Date
December 2022
Authors
Jarmo S. Kikstra
Zebedee R. J. Nicholls
Christopher J. Smith
Jared Lewis
Robin D. Lamboll
Edward Byers
Marit Sandstad
Malte Meinshausen
Gidden
Joeri Rogelj
Elmar Kriegler
Glen P. Peters
Jan S. Fuglestvedt
Ragnhild B. Skeie
Bjørn H. Samset
Laura Wienpahl
Detlef P. van Vuuren
Kaj-Ivar van der Wijst
Alaa Al Khourdajie
Piers M. Forster
Andy Reisinger
Roberto Schaeffer
Keywan Riahi
Journal
Geoscientific Model Development
Title
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Short description

While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the “climate-assessment” workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to “1.5 ∘C (with a probability of greater than 50 %) with no or limited overshoot” includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, “limited overshoot” typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being “Paris-compatible”, including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3–0.4 ∘C after peaking at 1.5–1.6 ∘C in 2035–2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a “climate-assessment” Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts.




Tags
Global modelling

Date
December 2022
Authors
Sigit Perdana
Georgios Xexakis
Konstantinos Koasidis
Marc Vielle
Alexandros Nikas
Haris Doukas
Ajay Gambhir
Annela Anger-Kraavi
Elin May
Ben McWilliams
Baptiste Boitier
Title
Expert perceptions of game-changing innovations towards net zero
Short description

Current technological improvements are yet to put the world on track to net-zero, which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However, the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation, but their limitations, availability, and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts' perspective, aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey, 260 climate and energy experts assessed transformative innovations against their mitigation potential, at-scale availability and/or widescale adoption, and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations, with next-generation energy storage, alternative building materials, iron-ore electrolysis, and hydrogen in steelmaking emerging as top priorities. Instead, technologies highly represented in well-below-2°C scenarios seemingly feature considerable and impactful delays, hinting at the need to re-evaluate their role in future pathways. Experts' assessments appear to converge more on the potential role of other disruptive innovations, including lifestyle shifts and alternative economic models, indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes, we finally note caveats related to the level of representativeness among the 260 engaged experts, the level of their expertise that may have varied across the examined innovations, and the potential for subjective interpretation to which the employed linguistic scales may be prone to.




Tags
Synergies

Date
December 2022
Authors
Ida Sognnaes
Title
What can we learn from probabilistic feasibility assessments?
Short description

In a new paper in Nature Energy, Odenweller et al. use uncertainty analysis to derive a probabilistic feasibility space for green hydrogen supply. Their analysis shows that even if electrolysis capacity grows as fast as wind and solar power have done, green hydrogen supply will remain scarce in the short term and uncertain in the long term.




Tags
Synergies

Conferences
Date
June 2023
Authors
Dirk-Jan van de Ven
Russell Horowitz
Jon Sampedro
Description